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Several breakdown wave structures have been observed in experiments on electrical break- 
down in gases. The most typical are a "shock wave" of ionization with continuous propaga ~ 
tion of a front upon which the degree of gas ionization changes discontinuously, and an 
ionization soliton, localized in a volume of relatively high-density plasma. The mechanisms 
underlying their propagation reduce to mechanisms for transfer of energy into the gas from 
the breakdown region. 

Both formation and propagation mechanisms of such waves have been studied [1-5]. We 
will note that these phenomena are unique to breakdown in dense gases in sub-threshold and 
super-threshold fields. The first type of wave is formed with a low degree of ionization in 
the discharge plasma where the absorption length of the incident radiation is large. The 
second type is intrinsic to dense plasma in which the ionization soliton is formed by one of 
two mechanisms -- dispersion, if the electron ionization path length li < rd (the Debye 
radius), or the overflow mechanism [6] when the skin layer forms the effective region of 
particle generation, outside of which the particles disappear. 

In contrast to such structures, at a certain wave beam power in a gas discharge plasma 
formation of periodic space--time or fixed (spatial) structures is possible. Their forma- 
tion and propagation are governed by the possibility of gas ionization at lengths which 
exceed the electron ionization path length. Radiation from the breakdown region can have 
such a property. Its spectrum in both molecular and atomic gases consists of an ionizing 
component related to recombination radiation of the atomic component. Photo-ionization of 
atoms and molecules with subsequent associative ionization is also possible. In each con- 
crete case a specific analysis of photostimulated ionization is necessary. The question of 
spectral characteristics and nature of ionizing ultraviolet radiation in glow and uhf dis- 
charges at moderate and high pressures was considered in [7-9]. We will not consider those 
matters in detail here, but considering the contribution of photoionization processes to the 
prebreakdown region resolved [i0, ii], we take them as a model for breakdown. These pro- 
cesses determine the coarse scale correlation of the state of the medium and thus control 
the dimensions of nonlinear structures. 

If radiation from the discharge is not significant to the process of ionization trans- 
port, its propagation in the prethreshold hf field is controlled by expansion of gas from 
the breakdown region and development of ionizatlon-heating instability behind the expansion 
wave front. An analysis of the nonlinear stage of such instability was performed without 
consideration of gas thermal conductivity in [12], and with such consideration in [13]. 
The role of radiation here is the creation of a seed plasma with parameters close to the 
instability threshold. If transport of ionizing radiation occurs over a length L, while the 
instability development time ~ri, then the rate of ionization transport ~L/T i. The time for 
development of ionization-superheat instability is determined by the slowest process 
involved -- gas expansion: T i ~ I/c s (l being the size of the breakdown region and cs the 
speed of sound). The speed of the ionization wave comprises %csL//. For L/1 > i the wave 
becomes supersonic. We note that in subthreshold fields a supersonic ionization wave is 
possible only with consideration of photostimulated ionization of the prebreakdown plasma. 
If we assume that L is determined by ambipolar diffusion, then L % ~Da//C s (D a is the ambi- 
polar diffusion coefficient). Then from the condition L/1 > 1 it follows that Da/c s > l, 

which is equivalent to the inequality T,v, ~p 
" T 7w~ >i' where c is the speed of light, Te, T 

are the temperatures of electrons and the gas respectively, 9eN is the electron--neutral 
collision frequency, v e is the thermal velocity of the electrons, and Up is the plasma 
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electron frequency. For an atmospheric-pressure air plasma this condition is satisfied for 
an electron concentration n > I0 ~7 cm -3. A plasma of such density corresponds to the inde- 
pendent discharge region, so that diffusion cannot be controlled by regions of the wave 
having differing gas and plasma concentrations. 

We will now turn to a model of the breakdown phenomenon. The system of equations 
describing the one-dimensional dynamics of the plasma and gas in an external electromagnetic 
field includes equations of: 

continuity for the gas 

o-f + Nv) --- O; 

and plasma, 

~n 
--ot + ~ (Nv) -- Ua- Oz--~ ~ = ~;in -- ~ n  ~ + ajar; (2)  

electron energy balance 

~, Ov t 0 [ ate 
- t P ~ = ~ a I E I ~ + ~ ~ x , n - ~ }  - -  ~ n ;  (3) 

radiation transport in the gas 

c OJ!Ox = vr~n--aJN; (4) 

the incident wave field in the geometric optics approximation 

alEl~laz = --~IEI ~. (5) 

Here N, v, p are the gas density, velocity, and pressure; ~ is the adiabatic index; J is the 
quantum plasma radiation density; ~i = G(IEI/N) 2B is the ionization frequency (for air 8 = 
2-3 [14]) I a = cko/No; ~r is the dissociative recombination coefficient; ko is a coefficient 
describing absorption of a photon in the unperturbed gas with subsequent ionization; ~ri is 
the frequency of neutral electron state excitations by electron collision, transition from 
these states forming the ionizing portion of the spectrum; ~ = ~n/N is the plasma conduc- 
tivity; a I = e~l(2m<oe~>); ~ ~ 4nolo is the uhf-field absorption coefficient (for YeN >> ~); 
m is the mass of the electron, e is its charge; ~eN is the section for electron collisions 
with neutrals; ~e is the electron thermal diffusivity coefficient; and ~r, e are the fre- 
quency and excitation energy of the radiating states. 

We will now determine the characteristic spatial and temporal scales of the problem. 
The characteristic inhomogeneity size L is determined by the ionizing radiation path length 
~i/k. A quasistate periodic structure is possible given the condition ~ << koL, where the 
field energy density changes little over a wavelength. We will evaluate the conditions 
necessary for satisfaction of this inequality as well as the result of nonsatisfaction below. 
Here we will assume IEI = const. 

The maximum time scale is determined by the slowest process involved, the gas dynamic 
one. Over the time scale of the latter the remaining processes in the plasma can be viewed 
as quasistationary with neglect of the left side of Eq, (2). In Eq. (3) it is considered 
that tile energy acquired by electrons in the field is expended in gas expansion and inelas- 
tic collisions with the neutral component. It will be assumed that all inelastic processes 
with subsequent transformation of energy into heat are included within gas enthalpy. That 
portion of such processes connected with excitation of radiating states will be considered 
independently. Despite the relative smallness of this portion of the energy losses it is 
comparable to the power radiated from the plasma and causes a change in the sign of ~v/~x in 
the regions with (n/N) << (n/N)cr. 

We will seek steady state solutions of system (1)-(5), assuming all quantities to be 
functions of y = x -- ut. In a coordinate system moving at velocity u, from Eq. (i) we have 
v = --uNo/N (where No is the value of the unperturbed gas density, N(=) = No). Iteration of 
Eq. (4) gives 



Vri ~rl I On 
J l = ~ 0 c n ,  J2 . . . .  k2oc N Ox" 

W i t h  c o n s i d e r a t i o n  o f  t h i s  i t  f o l l o w s  f r o m  Eq. (2 )  t h a t  

G [IEI~21~ %i N v~i O [In G /IEI~2~] 
= ~ - ~ - )  + ~ No ~koo~ V ~ )  J" 

Substituting the values obtained in Eq. (3), we arrive at the equation 

a a [X=~+x a%) ax a4X2~+, ] -~  ~ ~ -t- (a~u _ aa) -~ + - -  asXaf i -1+ a6 = O, (6)  

No XeOoG I E 12g+2 .~_o 
w h e r e  X = 7'_a~ ---- 2 6vn0P~N~ ~ = 2• ~'r ; 

Y " = 28 % I E 12 v~i" o0G I E I "z~+" 6vr~0Vio 

av~G I E 12~ ~v~Vio" % ] E 12Vrt = 5vTeo Vri. 
a5 f$rN~f~ -~- - ' ~ ,  ae = f$rn 0 

E q u a t i o n  (6)  d e s c r i b e s  m o t i o n  o f  an  a n h a r m o n i c  o s c i l l a t o r  w i t h  s t e a d y  s t a t e  m o t i o n s  b e i n g  
p o s s i b l e  o n l y  f o r  a 2 u  - -  a3  = 0 .  Hence  

28 ? u 1% I E 12 % 
_ v ~  ~ 28  . 

u = p ~0k0 ~ (7 )  

T h i s  means  t h a t  n o n l i n e a r  i o n i z a t i o n  s t r u c t u r e s ,  i f  s u c h  a r e  a d m i t t e d  by  Eq.  ( 6 ) ,  move a t  a 
v e l o c i t y  u ,  i n d e p e n d e n t  o f  t h e i r  a m p l i t u d e .  We n o t e  t h a t  c s i s  t h e  s p e e d  o f  s o u n d  i n  t h e  

hot gas (the Mach number relative to the unperturbed medium M=--!u ~]/~--T ,i,~. The char- 
Ct 0 

acteristic spatical scale of the periodic structures can be evalauted by linearizing Eq. (6) 

V eVrn 0 1 __ |" 
- -  r �9 in the vicinity of the equilibrium point X = o : i E ?  No ~o For the structure wave- 

length we have I == ~e/~v (~ is the mean coefficient for energy transfer from an elec- 
tron to a neutral). We transform Eq. (6) with the condition that u corresponds to Eq. (7). 
Multiplying Eq. (6) by dX/dy, we find 

t e [X2~+, ex]2 t ax  
x,~+~ ~ [ ~ j  + ~ e (x) ~ = o (e  (X) = a~X '~"+' -- a J  2"-' + a,), 

w h e n c e  f o l l o w s  t h e  f i r s t  i n t e g r a l  o f  Eq.  (6)  

~ t 

which describes conservation of energy of an "oscillator" moving in a "potential" 

II (X) = a4 % X -1 % X -2~ Cl al(4~-'~-3) X - - a ~ ( 4 ~ + t )  + a~ ( 2 ~ + 2 )  - -  X4[~+"-"~ ( 9 )  

(~(X) has two real positive roots for C~ = 0 and three for C~ > 0). For C t < 0 its beha- 
vior is similar to the first case (C~ = 0). Graphs of ~(X) are shown in Figs. i, 2. Oscil- 
lations in gas density in the wave occur between nulls of H(X) -- X, and X=, which corre- 
sponds to a nonlinear gas (and plasma) density wave, the form of which is defined by the equa- 
tion 

Y - - Y ~  - V - - H  (x) (10) 

In a subthreshold field for the condition p = const the discharge develops for N < No. 
Therefore the maximum gas density in the wave does not exceed the unperturbed value X,~ I, 

or V 2 ( ~ +  1 ) % / >  t .  This imposes a condition on the system parameters 601El"evi0,l 0 >~ 1. 

To f i n d  t h e  f o r m  o f  t h e  wave  s t r u c t u r e  X(y)  we f i r s t  c o n s i d e r  t h e  c a s e  C~ = 0 ,  a u n i q u e  
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''state" in the potential E(X), defined by the equation H = 0 (Fig. i). For 8 = 2.5 Eq. 
(9) reduces to a polynomial 

t a4 X6 a 5 X4 + X _ 5 ,  n (x) 7~ ~ (4~ + ~) ~ ( n )  

f o r  w h i c h  b y  t h e  s u b s t i t u t i o n  X 2 = z Eq .  ( 1 0 )  c a n  b e  t r a n s f o r m e d  t o  

t ~ z~Z4dz 
Y - -  Yo = ~ y__=zz4 +~za_~4z ' (12) 

where ~2,3,4 are the coefficients of the corresponding powers of X in Eq. (ii). 

The polynomial in the integrand has four real roots. We denote these by zj and note 
that z3 = 0, z4 < 0. For z l~z ~<z2 the calculations can be simplified. Since the numera- 
tor of the integrand has no singularities we bring forward of the integral sign its mean 
value on the segment zx, z2 and introduce the transform [15] z = zlz2/(z 2 --(z~--z,)sinZ~), 
which reduces Eq. (12) to 

2 

whence 

zlz' ] (13) 
x =  F F~(y-~0) " 

z, - -  (z. 2 - -  zl) s i n2 /2  [z 1 ~- z,~5/a 

We will consider the case C~ > 0. It is interesting in that as can be seen from Fig. 
2, depending on the value of C: two types of structure are possible -- periodic and soliton- 
like (curves i and 2). Steady state periodic structures correspond to the "level" H = 0 
in the "potential" H(X, C,), while the change in X occurs between X~ and X2. A soliton 
solution is possible for a potential curve satisfying the conditions H(Xo, C~) = 0, H'(Xo, 

CI) = 0, Xo = i. From this follows the value C, = a,[(4~q_3) (4~+I) ~ 2(~q-i)-- and condi- 

tions upon the parameters which in fact correspond to boundary conditions 

as ---- a4 + a6. (14) 

To obtain the solution in explicit form it is convenient to approximate ~(X, CI) by a 
third-degree polynomial 

I]3(X) = a ( X  - -  X o P  - -  b ( X  - -  X o ) L  (15) 

having the same singular points as H(X): the second real root Xa = Xo + b/a, Xo = i. From 

, / ( 4 ~ +  3) =~ 1 / ( 4 ~  +3) % 
Eq. (9) it follows that X a ~  V ( 4 ~ + l ) ~  The expression Xo+ b/a= V (4~Jri)--a4 gives the 

relationship between the coefficients of Ha and H(X, C~). Substituting Eq. (15) in Eq. (i0) 
and performing the integration, we obtain 

x= x. + ,0))] (16) 

4 
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Distributions of relative gas density X for periodic and soliton-like discharge structures 
are shown in Figs. 3, 4 respectively. The plasma concentration distribution follows the 
relationship n = f(N), introduced above. 

Numerical solution of Eq. (6) for air at E = 3000 V/cm, p = 1.33.104 Pa and various 
initial conditions (which corresponds to change in the constant CI, and consequently, oscil- 
lator energy) is shown in Fig. 3. With increase in energy the amplitude of the X oscilla- 
tions increases from 2.2 to 3.1. The characteristic scale of the periodic structure l~i 
CN. 

The above treatment is limited by the condition ~ << 1 of weak field absorption per 
wavelength and n < n c = m(~ ~ q-v2)/(4~e 2) ~ 3.15X 10 -1~ (~2 ~ v2). The first is equivalent to the 
inequality m~/c~ << i, which together with the second specifies the range of gas and plasma 
parameters over which it is possible to consider IE] = const. If the breakdown wave is 
formed in a uhf-field beam, the direction of the velocity u is determined by the weak gradi- 
ent in [E] a. The slow change in field can be considered by introduction of IEI = Eo exp 

-- p(n)dy ,. where  xf  i s  t h e  f r o n t  c o o r d i n a t e ,  and Xo i s  t h e  c o o r d i n a t e  o f  t h e  p o i n t  a t  
x 0 

which  (IEI/N) < ( I a l / N ) b r ,  t h e  b r eakdown  v a l u e .  

Nonmoving s t r u c t u r e s  can  a l s o  be  formed a l o n g  w i t h  moving o n e s .  These  s t r u c t u r e s  a r e  
formed o f  a s u c c e s s i o n  o f  r e g i o n s  o f  h o t  gas  w i t h  r e d u c e d  d e n s i t y  and a h i g h  d e g r e e  of  
i o n i z a t i o n  and r e g i o n s  o f  h i g h - d e n s i t y  c o l d  u n i o n i z e d  g a s .  Such homogeneous  and s t a t i o n a r y  
r e g i o n s  can  e x i s t  i f  t h e r e  i s  no e n e r g y  f l ow  b e t w e e n  them. 

It will be convenient to analyze the structures with the following model. In the beam 
of uhf-waves with transverse dimension R gas heating is related to transport of energy from 
the electron component and intrinsic radiation. Energy redistribution is caused by thermal 
conductivity along the direction of the beam (x-axis) and in the transverse direction at the 
length R. The equation for gas temperature can be written in the form 

N ~  = - ~ l x ~ )  + 5veNT~n-- ~2 + JkN (17) 

(x i s  t h e  gas  t h e r m a l  c o n d u c t i v i t y ) .  C o n s i d e r i n g  t h a t  nonmoving s t r u c t u r e s  a r e  formed due 
to  s a t u r a t i o n  o f  i o n i z a t i o n - s u p e r h e a t  i n s t a b i l i t y ,  we can  t a k e  t h e  p l a s m a  p a r a m e t e r s  such 
t h a t  t h e  c h a r g e  l o s s  i s  r e l a t e d  b a s i c a l l y  to  d i s s o c i a t i v e  r e c o m b i n a t i o n  w h i l e  a t t a c h m e n t  i s  
i n s i g n i f i c a n t .  Then f rom t h e  b a l a n c e  e q u a t i o n  t h e  e l e c t r o n  d e n s i t y  w i l l  be  d e f i n e d  by 

S i n c e  the  c h a r a c t e r i s t i c  t ime  f o r  d e v e l o p m e n t  o f  i o n i z a t i o n - s u p e r h e a t  i n s t a b i l i t y  ~ i  i s  
s i g n i f i c a n t l y  g r e a t e r  t h a n  t h e  e l e c t r o n  r e l a x a t i o n  t e m p e r a t u r e  T~ >> T~-~ (6Ve~ ~-6~x'~i) -~ and 
0) >> ~VeN ~ ~tVei, we may u s e  t h e  e x p r e s s i o n  

e2 I E 12 

Te = 3m (6~eN + 6iVei ) (YeN + Vei) ' (19) 

where 6 i is the mean coefficient for energy transfer from electrons to ions; 9el is the fre- 
quency of electron--ion collisions. These facts make it possible to reduce Eq. (17) to the 
form 



or o ( o r )  o-i--~ •  +~-(N, T); 

7 '2 2 AI(IEUV) - -B -  N + Jk. ( N , / ' )  = (c~N + 'h'~,O (cs~v + v,~) 

(20) 

(21) 

H e r e  A = 6<ao~v~>@]El2/3m; C2 = 6 < a , ~ > ;  Cs = <~eNv~>; B = C4/(MN<oNNvN>R2); C. i s  a c o n -  
s t a n t  dependent on the type of gas; M N is the mass of the molecule; v N is the thermal velo- 
city of the molecules; aNN is the section for molecule--molecule collisions. The problem of 
existence of stable hot and cold gas regions was considered in [16] relative to the astro- 
physical problem of stationary gas clouds of various temperatures. If the size of each of 
the alternating cold and hot regions is large in comparison to the transition region be~leen 
them, one can consider the parameter distribution within them homogeneous. Then T(N) within 
the limits of each region is given by an equation ~- (N, T) = 0. For a given value of p 
from the condition 

~-(p ,  T) = 0 (22)  

t h e r e  f o l l o w s  a s p e c t r u m  o f  T ( p )  v a l u e s .  R e g i o n s  w i t h  two d i f f e r e n t  T v a l u e s  f r o m  t h i s  
spectrum TI and T2 are stationary and stable if there is no heat flow between the re~ions. 

T~ 

Integrating steady state equation (20) over this region, we obtain k O-~] ]r I = 2 ~-~, T)dT. 
T I 

Now it is necessary to consider that integration is performed over the transition region 
between the values TI and T2. Assuming that these correspond to extrema of the T and N dis- 
tribution in regions of high and low temperature gas states, we have 

T~ 

•  (p, T)dT = 0 (23)  

T x 

an equation for the values of p, for which a stable stationary spatial structure of the dis- 
tribution is possible. The system (22), (23) was solved numerically using the parameters 
~r = 10-7 cm3/sec [17], ~= 10 -2 [18], ~i = 2m/MN = 3.8"10 -5 , ~i = f(IEI/N) [19, 20], photo- 
ionization section Opi = (1.4"1.6) "10-x8 cm2 [8]. The radiation power density was estimated 
from the condition Brnf = Jk (nf is the photoelectron concentration). To calculate the 
values of "el in Eq. (21) using the expression of [18] parameters n, T e in accordance with 
Eqs. (18), (19) were used. For their values it follows from Eq. (23) that the pressure which 
corresponds to stable spatial structure is l0 s Pa at E = 2000 V/cm and 1.22"105 Pa at E = 

T 2 

3000 V/cm. The structure period d~J d? for the parameters used is approximately 

1 cm. 

We will estimate the range of parameter values over which ~s < ~r n. Assuming ~r = 3.5" 

10-7~300/Te [tTl, ~s=8.3.10~(i0-~)2[~ exp[ 2(I--F/300)] 0,2] [21], we find the plasma density 
, ] + 

satisfying the given condition. For the characteristic temperatures of neutrals and elec- 
trons in an atmospheric pressure independent discharge (T ~ i0 3 K, T e ~ 1 eV) n > i0 :" cm -3. 
Estimates show that consideration of detachment from 02 ions upon collisions with N= and O= 
neutrals [22, 23], upon collisions with oxygen molecules excited to the metastable level 
'Ag (N~ = 0.98 eV) [21], and in processes of associative detachment in the presence of atomic 
particles [21] can reduce the value of n presented by a minimum of one order of magnitude. 
The analysis presented is valid for gases which are not electronegative (within the limits 
n < nc) , for example, nitrogen. It also remains qualitatively valid for electronegative 
gases. However quantitative estimates require special calculation, within the framework of 
which the condition ~s < ~r n can be removed. 

Thus, consideration of ionizing radiation from the breakdown region causes the steady 
state discharge structure in a uhf-field to be either a plasma soliton or a nonlinear ioni- 
zation wave, depending on the amount of energy expended in the system (i.e., the wave beam 
power). At certain pressures a situation is possible in which energy flow between hot and 
cold gas regions is absent. This state corresponds to a periodic structure of the density 
and gas and plasma temperatures. 
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